| The graph of $y = f(x)$ is transformed to the graph of $y = 3 - f(x)$. | | |--|-------| | Describe fully, in the correct order, the two transformations that have been combined. | [4] | | | | | | ••••• | | | ••••• | | | ••••• | | | | | | | | | ••••• | | | ••••• | | | ••••• | | | | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | | | | ••••• | | | ••••• | | | ••••• | 1. | Given that the coefficient of x^2 in the expansion of $(1-3x)(1+ax)^6$ is -3 , find the possible va of the constant a . | |---| (a) In the diagram, X and Y are points on the line AB such that BX = 9 cm and AY = 11 cm. Arc BC is part of a circle with centre X and radius 9 cm, where CX is perpendicular to AB. Arc AC is part of a circle with centre Y and radius 11 cm. | Show that angle $XYC = 0.9582$ radians, correct to 4 significant figures. | [1] | |---|--------| •••••• | | | | | (b) | Find the perimeter of <i>ABC</i> . | [6] | |------------|------------------------------------|-----| 4. The diagram shows the graph of y = f(x). (a) On this diagram sketch the graph of $y = f^{-1}(x)$. [1] It is now given that $f(x) = -\frac{x}{\sqrt{4 - x^2}}$ where -2 < x < 2. | (b) | Find an expression for $f^{-1}(x)$. | [4] | |------------|--------------------------------------|-----| ••••• | |-----|--|-------| | | | | | The | function g is defined by $g(x) = 2x$ for $-a < x < a$, where a is a constant. | | | (c) | State the maximum possible value of a for which fg can be formed. | [1] | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | (d) | Assuming that fg can be formed, find and simplify an expression for $fg(x)$. | [2] | | | | | | | | ••••• | | | | ••••• | | | equation $\frac{\tan x + \cos x}{\tan x - \cos x} = k$, where k is a constant, can be | | |-------|--|--| | | $(k+1)\sin^2 x + (k-1)\sin x - (k+1) = 0.$ | | | | | | | | | | | ••••• | ••••• | ••••• | Hence solve the equation | $\frac{\tan x + \cos x}{\tan x - \cos x} = 4 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$ | [4] | |--------------------------|---|-----------| | | tan x cosx | •••••• | | ••••• | ••••••••• | | | | | | | | | | ••••• | | ••••• | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | The line y = 2x + 5 intersects the circle with equation $x^2 + y^2 = 20$ at A and B. | ••• | | |-----|--| | | | | ••• | | | | | | ••• | | | | | | | | | ••• | | | | | | | | | | | | | | | ••• | | | | | | | | | | | | | | | ••• | | | ••• | | | | | | ••• | | | | | A straight line through the point (10, 0) with gradient m is a tangent to the circle. (b) Find the two possible values of m. [5] | The | equation of a curve is $y = 2x^2 + kx + k - 1$, where k is a constant. | | |-------|---|--------------| | (a) | Given that the line $y = 2x + 3$ is a tangent to the curve, find the value of k . | [3] | It is | now given that $k = 2$. | | | | Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants, hence state the coordinates of the vertex of the curve. | , and
[3] | In the diagram, OAB is a sector of a circle with centre O and radius 2r, and angle $AOB = \frac{1}{6}\pi$ radians. The point C is the midpoint of OA. | (a) | Show that the exact length of BC is $r\sqrt{5-2\sqrt{3}}$. | [2] | |-----|---|--------| •••••• | | | | •••••• | | | | ••••• | •••••• | | | | •••••• | | | | | | | | | | | | ••••• | | | ••••• | | | |
 | • • • • • • • • | |------------|---------------|--------------|--------|-------|-----------|-----------------| | | | | | | | | | •••••• | | •••••• | | ••••• |
 | • • • • • • • • | | ••••• | | | | |
 | ••••• | | | | | | |
 | ••••• | | ••••• | ••••• | | | |
••••• | ••••• | | | | | | |
 | ••••• | | | | | | |
 | | | | | | | |
 | | | | | | | ••••• |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | | | | | | | | | |
 | | | Find the 6 | xact area of | the shaded r | egion. | |
 | ••••• | | Find the 6 | exact area of | the shaded r | egion. | |
 | | | Find the 6 | exact area of | the shaded r | egion. | | | | | Find the e | exact area of | the shaded r | egion. | | | | | Find the e | exact area of | the shaded r | egion. | | | | | Find the 6 | exact area of | the shaded r | egion. | | | | | Find the 6 | exact area of | the shaded r | egion. | | | | | Find the 6 | exact area of | the shaded r | egion. | | | | | Find the 6 | exact area of | the shaded r | egion. | | | | | Find the 6 | exact area of | the shaded r | egion. | | | | | Find the 6 | exact area of | the shaded r | egion. | | | | 9. Functions f and g are such that $$f(x) = 2 - 3\sin 2x \quad \text{for } 0 \le x \le \pi,$$ $$g(x) = -2f(x)$$ for $0 \le x \le \pi$. (a) State the ranges of f and g. [3] The diagram below shows the graph of y = f(x). **(b)** Sketch, on this diagram, the graph of y = g(x). [2] The function h is such that $$h(x) = g(x + \pi) \text{ for } -\pi \le x \le 0.$$ (c) Describe fully a sequence of transformations that maps the curve y = f(x) on to y = h(x). [3] | The | e equation of a circle with centre C is $x^2 + y^2 - 8x + 4y - 5 = 0$. | | |------------|---|-------| | (a) | Find the radius of the circle and the coordinates of C . | [3] | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | The | e point $P(1, 2)$ lies on the circle. | | | (b) | Show that the equation of the tangent to the circle at P is $4y = 3x + 5$. | [3] | | | | | | | | ••••• | | | | ••••• | | | | | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | | | | The point Q also lies on the circle and PQ is parallel to the x-axis. (c) Write down the coordinates of Q. [2] The tangents to the circle at P and Q meet at T. (d) Find the coordinates of T. [3]