The graph of $y = f(x)$ is transformed to the graph of $y = 3 - f(x)$.	
Describe fully, in the correct order, the two transformations that have been combined.	[4]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

1.

Given that the coefficient of x^2 in the expansion of $(1-3x)(1+ax)^6$ is -3 , find the possible va of the constant a .

(a)

In the diagram, X and Y are points on the line AB such that BX = 9 cm and AY = 11 cm. Arc BC is part of a circle with centre X and radius 9 cm, where CX is perpendicular to AB. Arc AC is part of a circle with centre Y and radius 11 cm.

Show that angle $XYC = 0.9582$ radians, correct to 4 significant figures.	[1]
	••••••

(b)	Find the perimeter of <i>ABC</i> .	[6]

4.

The diagram shows the graph of y = f(x).

(a) On this diagram sketch the graph of $y = f^{-1}(x)$. [1]

It is now given that $f(x) = -\frac{x}{\sqrt{4 - x^2}}$ where -2 < x < 2.

(b)	Find an expression for $f^{-1}(x)$.	[4]

		•••••
The	function g is defined by $g(x) = 2x$ for $-a < x < a$, where a is a constant.	
(c)	State the maximum possible value of a for which fg can be formed.	[1]
		•••••
(d)	Assuming that fg can be formed, find and simplify an expression for $fg(x)$.	[2]
		•••••
		•••••

.....

	equation $\frac{\tan x + \cos x}{\tan x - \cos x} = k$, where k is a constant, can be	
	$(k+1)\sin^2 x + (k-1)\sin x - (k+1) = 0.$	
•••••		
•••••		
•••••		

Hence solve the equation	$\frac{\tan x + \cos x}{\tan x - \cos x} = 4 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	[4]
	tan x cosx	
••••••		•••••
		•••••••••
•••••		•••••
		•••••
		•••••

The line y = 2x + 5 intersects the circle with equation $x^2 + y^2 = 20$ at A and B.

•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	

A straight line through the point (10, 0) with gradient m is a tangent to the circle. (b) Find the two possible values of m. [5]

The	equation of a curve is $y = 2x^2 + kx + k - 1$, where k is a constant.	
(a)	Given that the line $y = 2x + 3$ is a tangent to the curve, find the value of k .	[3]
It is	now given that $k = 2$.	
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are constants, hence state the coordinates of the vertex of the curve.	, and [3]

In the diagram, OAB is a sector of a circle with centre O and radius 2r, and angle $AOB = \frac{1}{6}\pi$ radians. The point C is the midpoint of OA.

(a)	Show that the exact length of BC is $r\sqrt{5-2\sqrt{3}}$.	[2]
		••••••
		••••••
		•••••
		••••••
		••••••
		•••••

	•••••				 	• • • • • • • •
••••••		••••••		•••••	 	• • • • • • • •
•••••					 	•••••
					 	•••••
•••••	•••••				 •••••	•••••
					 	•••••
				•••••	 	
Find the 6	xact area of	the shaded r	egion.		 	•••••
Find the 6	exact area of	the shaded r	egion.		 	
Find the 6	exact area of	the shaded r	egion.			
Find the e	exact area of	the shaded r	egion.			
Find the e	exact area of	the shaded r	egion.			
Find the 6	exact area of	the shaded r	egion.			
Find the 6	exact area of	the shaded r	egion.			
Find the 6	exact area of	the shaded r	egion.			
Find the 6	exact area of	the shaded r	egion.			
Find the 6	exact area of	the shaded r	egion.			
Find the 6	exact area of	the shaded r	egion.			

.....

9.

Functions f and g are such that

$$f(x) = 2 - 3\sin 2x \quad \text{for } 0 \le x \le \pi,$$

$$g(x) = -2f(x)$$
 for $0 \le x \le \pi$.

(a) State the ranges of f and g.

[3]

The diagram below shows the graph of y = f(x).

(b) Sketch, on this diagram, the graph of y = g(x).

[2]

The function h is such that

$$h(x) = g(x + \pi) \text{ for } -\pi \le x \le 0.$$

(c) Describe fully a sequence of transformations that maps the curve y = f(x) on to y = h(x). [3]

The	e equation of a circle with centre C is $x^2 + y^2 - 8x + 4y - 5 = 0$.	
(a)	Find the radius of the circle and the coordinates of C .	[3]
		•••••
		•••••
		•••••
		•••••
The	e point $P(1, 2)$ lies on the circle.	
(b)	Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	[3]
		•••••
		•••••
		•••••
		•••••

The point Q also lies on the circle and PQ is parallel to the x-axis. (c) Write down the coordinates of Q. [2] The tangents to the circle at P and Q meet at T. (d) Find the coordinates of T. [3]