1 A summary of 50 values of x gives

$$\Sigma(x-q) = 700,$$
 $\Sigma(x-q)^2 = 14235,$

where q is a constant.

(a) Find the standard deviation of these values of x.

[2]

Standard deviation is not affected by coding

$$\bar{b} = \sqrt{\frac{14235}{50} - \left(\frac{700}{50}\right)^2}$$

$$\sigma = 9.4180$$

(b) Given that $\Sigma x = 2865$, find the value of q.

[2]

 $\sum (2-q) = \sum 2 - nq$ 700 = 2865 - 50q

$$509 = 2865 - 700$$

9 = <u>2165</u> .50

q = 43·3

) Show that	the probabilit	y of obtaining	g exactly o	one head is ().225.		[3]
	PCx	=I)=I	CHTT	T) + P(<i>THTT</i>) -	+ P/T1	~# <i>T</i>) +
			Committee				P(TTT#)
one biase	2 lain	= /	0.6×6	(2-5) ³ +	D.4×6	. 6 ³ +	0.4 x0.5
	6			_			0·4×6·5)
P(T)=0.						_	
· · · · · · · · · · · · · · · · · · ·				•			K.3
				•			
Her thr	ee fan Co	in .	= 0.	225			
P(H) =	0.5						
P(T)=	0.5						
			OH				
••••••					•••••	•	
) Complete	the following	probability d	istribution	table for X.			[2]
	Х	0	1	2	3	4]
	P(X=x)	0.05	0.225	0.375	0.275	0.075	
	W	AII		Or	VIC	7	_
							0.4-
PC.X	'=3) =	Р(НН	H.T.) +	PLHHT	H) + P	HTHH) + P(T#
	=	0.6 x(). 5) ³	(3 <i>†</i>	0.4 x C)·S) ³	
	=	n. 27					
••••••	=	91.00		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
			/				
	^ _ 9 \	— 1_	- (/).	05 +6	1.225	+0.23	x + 0.07
P()			(

Alisha has four coins. One of these coins is biased so that the probability of obtaining a head is 0.6.

2

(c) Given that E(X) = 2.1, find the value of Var(X). [2] 2 0 1 3 4 \boldsymbol{x} 0.375 0.275 P(X = x)0.225 0.075 0.05 $Var(x) = E(x^2) - (E(x))^2$

A red spinner has four sides labelled 1, 2, 3, 4. When the spinner is spun, the score is the number on the side on which it lands. The random variable X denotes this score. The probability distribution table for X is given below.

х	1	2	3	4
P(X = x)	0.28	p	2p	3 <i>p</i>

(a)	Show that $p = 0.12$.	[1]
	0.28 + P + 2p + 3p = 1	
	6p = 1 - 0.28	
	p = 0.72	
	6	

A fair blue spinner and a fair green spinner each have four sides labelled 1, 2, 3, 4. All three spinners (red, blue and green) are spun at the same time.

(b) Find the probability that the sum of the three scores is 4 or less. [3]

For Red Spinner P(1) = 0.28 P(2) = 0.12For Blue and Spinner P(1) = 1 P(2) = 1Fair Spinners

Possible Out comes (Sum should be 4 or less)

R B G

1 1 2

1 2 1

1 1 1

2 1 1

P(3 = 4) = P(1, 1, 2) + P(1, 2, 1) + P(1, 1, 1) + P(2, 1, 1)

= 0.0175 + 0.0175 + 0.0175 + 0.0075

[5]

(c) Find the probability that the product of the three scores is 4 or less given that X is odd.

Let y represent product of the 3 scores
that is less or equal to 4.

•••				<u> </u>
	R	B	67	
	1	/	1	0.28 x 0.25 x 0.25 = 0.01 x
	,	<u>, , , , , , , , , , , , , , , , , , , </u>	2	0.28 × 0.25 × 0.25 = 0.0175
	/	1	3	0. 28 × 0. 25 × 0. 25 = 0. 0175
	/	/	4	$0.28 \times 0.25 \times 0.25 = 0.0175$
	1	2	1	0-28 x 0-25 x 0-25 = 0.0175
	1	2	2	0.48 × 0.25 × 0.25 = 0.0175
	<u>l</u>	3	1	0.28 × 0.25 × 0.25 = 0.0175
	1	4	1	0.28 x 0.25 x 0.25 = 0.0175
	3	1	1	$2(0.12) \times 0.25 \times 0.25 = 0.015$
-				

$$P(x) = P(x=i) + P(x=2)$$

$$P(y/x) = \frac{P(y \cap x)}{P(x)}$$

$$= \underbrace{(\hat{O} \cdot 175 \times 8) + 0 \cdot 015}_{0.05}$$

In a restaurant, the tables are rectangular. Each table seats four people: two along each of the longer sides of the table (see diagram). Eight friends have booked two tables, *X* and *Y*. Rajid, Sue and Tan are three of these friends.

(a) The eight friends will be divided into two groups of 4, one group for table *X* and one group for table *Y*.

Find the number of ways in which this can be done if Rajid and Sue must sit at the same table as each other and Tan must sit at the other table. [3]

When the friends arrive at the restaurant, Rajid and Sue now decide to sit at table X on the same side as each other. Tan decides that he does not mind at which table he sits.

	Atternatively
	2 parts 1 horsen.
	eit in 21 ways
21	NO OF OUT ANGEMENTS =
RS	DD 6C x 21 x 21 x 2 sit on either 2.
	Side of take a
M 1	2 people Chosen R&S 3it in 2! ways alongside
be	
2	2 each other
	= 288D
As t	hey leave the restaurant, the 8 friends stand in a line for a photograph.
(c)	Find the number of different arrangements if Rajid and Sue stand next to each other, but neither
	is at an end of the line. [4]
(Res	togethe) RS 71x21
	CIRC
Res tog	ethn)
and at t	
end of a	
lino.	S P 61
UNL	
	No of arrangements = No of Arragement No of arrange
	[Res together] [Res together]
	at the end of
	L'ng]
	7/X21 - 61X4
	10.080 — 2880
	7200

Hanna buys 12 hollow chocolate eggs that each contain a sweet. The eggs look identical but Hanna knows that 3 contain a red sweet, 4 contain an orange sweet and 5 contain a yellow sweet. Each of Hanna's three children in turn randomly chooses and eats one of the eggs, keeping the sweet it contained.

(a)	Find the probability that all 3 eggs chosen contain the same colour sweet.						

$$\frac{1c}{220} = \frac{3}{44}$$

$$P(yyy) = \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} = \frac{60}{1320} = \frac{10}{220}$$

(b)	Find the probability that all 3 eggs chosen contain a yellow sweet, given that all three children have the same colour sweet. [2]
	P (yellow Came colour Sweet)
	\rightarrow (3y), 3R,30
	= P (yellow \(\) Same Colour Sweet) + (Same colour Sweet)
	P(Same colour Sweet)
	= P (3 y ellow) 10/220 10
	$= \frac{P(3yellano)}{P(Same color)} = \frac{10/220}{15} = \frac{10}{15} = \frac{21}{3}$
(c)	Find the probability that at least one of Hanna's three children chooses an egg that contains an
(C)	orange sweet. [3]
	P(Orange >1) = 1 - P(No orange)
	0 = 1- [8 x 7-x 6 7 10]
	MATH_T
	1320
	= 41
	55
	Λ \sim
	$P(No orange) = {}^{8}C_{3} = 56$
	$\frac{1}{12} \left(\frac{1}{2} = \frac{220}{220} \right)$
	$P(At least one orange) = 1 - \frac{56}{220}$
	= <u>41</u>
	55

6.

On any day, Kino travels to school by bus, by car or on foot with probabilities 0.2, 0.1 and 0.7 respectively. The probability that he is late when he travels by bus is x. The probability that he is late when he travels by car is 2x and the probability that he is late when he travels on foot is 0.25.

The probability that, on a randomly chosen day, Kino is late is 0.235.

(a) Find the value of x. [3]

$$P(L) = P(BL) + P(CL) + P(FL)$$

$$0.235 = 0.2x + 0.1x2x + 0.7x0.25$$

$$0.235 = 0.27 + 0.29 + 0.175$$

$$0.235 - 0.175 = 0.476 \Rightarrow \pi = \frac{0.06}{0.4} = \frac{3}{20} = 0.1$$

(b) Find the probability that, on a randomly chosen day, Kino travels to school by car given that he is not late. [2]

$$P(C/L') = P(C \cap L')$$

$$= \underbrace{0.1 \times (1-2 \times 0.15)}_{1 \times 0.225}$$

$$= 0.07 = 14$$

$$0.765 = 153$$

					• • • • • • • • • • • • • • • • • • • •			
	No of	arran	gement	ā — —	91			
	J	C	/ <u>ک</u> تر		1×21	> Ans		•••••
				= 9	0720			
			+ 6					•••••
there are a	number of dift t least 5 letter.	rs between	the two As		in the word A		D in v	vhic []
<u>2</u>	NewsO.I	200.200	ς A			A.		7
	孙	43 △	7	A	IC	A		7
	71,	434]] 7560		A		<u>A</u>	A	7
<u>6</u>	letten		uA's			A	A	7
	letten					A	A	7
		b.etw.eer	uA's			A	4	7 7
	letten 7! x 2 21 = 9	between	v A's	A		A	4	7 7
	letten 7! x 2 21 = 9	between	v A's	A		A	4	7 7

Five 1	letters are	selected at	random from	the 9 letters in the word ACTIVATED.
(c)	Find the p	robability tl	nat the selecti	ion does not contain more Ts than As. [5]
	γ 			Two As
	A	T	Others	from 1
,	1	1	3	$A T = \frac{5}{2} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = 40$
	J	D	4	$A = 5C_{4} \times ^{2}C_{1} = 10$
	2	٦	1	$AATT = {}^{5}C, = 5$
	2	1	2	$AAT = -\frac{5}{2} \times \frac{2}{2} = 20$
	2	0	3	$A A = \frac{5}{3} = 10$
	0	0	5	= 1
				Potal = 86
•	•	•••••		
•	•••••••••••	•••••	Pooba	6:6:tu = 86
•	••••••••••••	•••••		9 Otal No. of
•	•••••••••••	•••••		5 Selections
•	•••••••	•••••		= 86 without Restrict
•	•••••••	N	TAT	H 10 726
•	••••••••••••			= 43
•	•••••••	•••••	•••••	= <u>43</u> 63
•				
		•••••		
•		•••••		
•				

A group of 15 friends visit an adventure park. The group consists of four families.

- Mr and Mrs Kenny and their four children
- Mr and Mrs Lizo and their three children
- Mrs Martin and her child
- Mr and Mrs Nantes

The group travel to the park in three cars, one containing 6 people, one containing 5 people and one containing 4 people. The cars are driven by Mr Lizo, Mrs Martin and Mr Nantes respectively.

(a) In how many different ways can the remaining 12 members of the group be divided between the

	three cars?								[3]
	6	Members		<u>5 1</u>	Nember	<u> </u>	41	nembe	es .
	-Mr.	Lizo (Dri	er) -	Mrs.	Martin)	-Mr.	Mant	e
	(5	members	١	/L ~	Drive	γ			river
		100000000	.)		1).640).06.1	S)	افا	memb	ers)
N	umber	of ways	, 12	×	7 _C	×	3	•••••	••••
				5	04	•	3		••••
			= /	792	× 35	× /			
				27-7	20				
			0						
		B.							••••
The	group enter t	the park by walkin	g through a	gate one a	at a time.				
(b)		y different orders stays together?	can the 15	friends go	through the	gate if M	Ir Lizo g		nd [3]
	-	•	Kennyis	Family	Marti	n's Na	nte's		
	L	[Dyr	orgen
								سلعط ح	go n'i Louiv
	Mumber	of ways:	41	× 61	x 21	у д	/ × 3	V	
'	Q. Dat	J		/				9	••••
		Liz	∵ 0 ·^{	Kenny	marti	n No	nte		••••
			_	720	xax	_	6		

= 414720

In the	park,	the	group	enter a	a com	petition	which	requires	a team	of 4	l adults	and 3	children.

(c)	In how many ways can the team be chosen from the group of 15 so that the 3 children are all from different families? [2]
	Adult = 7 Children = 8
	4 adults and 3 children are needed
	Number of ways: 7 Value of Wa
	$\frac{7}{C} \times \left(\frac{4}{C}, \times \frac{3}{C}, \times \frac{2}{C}\right) $ $\frac{1}{6} \times \frac{3}{C} \times \frac{2}{C} \times \frac{2}{C}$
	35 x 4 x 3 x 1
	= 420
(d)	In how many ways can the team be chosen so that at least one of Mr Kenny or Mr Lizo is included? [3]
	Total no. of ways (without restriction) $^{\circ}$ $^{7}C_{4}$ \times $^{8}C_{3} = 1960$
	No. of ways : Two adults = 5 x 8 c = 280
	(Neither Kenny nor Lizo is chosen)
	Required No. of ways: 1960 - 280
	(with at least one = 1680
	Mr. Kenny of Lizo)

A total of 500 students were asked which one of four colleges they attended and whether they preferred soccer or hockey. The numbers of students in each category are shown in the following table.

	Soccer	Hockey	Total
Amos	54	32	86
Benn	84	72	156
Canton	22	56	78
Devar	120	60	180
Total	280	220	500

(a)	Find the probability	that a randomly chosen	student is at Canton	college and	prefers hockey.
-----	----------------------	------------------------	----------------------	-------------	-----------------

Probability =

(b) Find the probability that a randomly chosen student is at Devar college given that he prefers soccer.

P(Devar | Soccer)

(c) One of the students is chosen at random. Determine whether the events 'the student prefers hockey' and 'the student is at Amos college or Benn college' are independent, justifying your answer.

X = Students prefers Hockey Y = Students is at Atmos College or Benn College

If X, Y are independent, then

 $P(X \cap Y) = P(X) \times P(Y)$

 $P(y) = 86 + 156 = 342 \qquad As P(x) \cdot P(y) \neq P(x_0y)$

[1]

The 8 letters in the word RESERVED are arranged in a random order.

(a)	Find the probability that the arrangement has	V as the first letter and E as	the last letter. [3]	
	RESERVED	8 Letters		
		2 R		
		3.E		
		S, V, D		
	Υ	E		
	No of Arrangement:	61		
	J /	-2121 Cow	of 3, 1E and)	
	2R	at C	of 2, 1E and)	
	No. of Arrangement U	Dithout Restricti	m: 8.1	
	<i>()</i>	6!	···········2}X3/	
	Probability =	2! x2!	180 _ 3	
	T 10000011414 =	8!	3360 SE	, >
(b)	Find the probability that the arrangement has	21×31	l three Es are together.	
	. 0		[4]	
	P(2R/3E) =	P(2R () 3E) cond	itional probability	-
	MATH	P(3E)		
	P(2R and 3E)	P (2R/3E)		
<u> </u>	1 (21, did se)			
RA	REEE_	- 51		
~		41.		
	51	61		
	P(3E)	<mark></mark>	•	
E	E E RR	= /20	<u></u>	
	VVVVV	360		
	61	= 1		
	21	3	······	
	•			

A summary of 40 values of x gives the following information:

$$\Sigma(x-k) = 520, \qquad \Sigma(x-k)^2 = 9640,$$

where k is a constant.

(a)	Given that the mean of these 40 values of x is 34, find the value of k.		
	- o/		

$$\overline{\alpha} = 34$$

$$\Sigma(\chi-\chi)=520$$

$$2\pi - n\kappa = 520$$
 $n = no. of Samples$

$$2x - 40x = 520$$
 Mean of 40 values is 34

$$40 K = 840$$
 $ZX = 34 \times 40$

[2]

$$Variance = \frac{\Xi(a-\kappa)^2}{n} \left(\frac{\Xi(a-\kappa)}{n}\right)^2$$

$$= \frac{9640}{40} - \left(\frac{520}{40}\right)^2$$

		Tota Repeated	L No of	letters,	n=8
	<i>l</i>	Repeated	letters:	30s.,.	2 R.
	No of	arrangeme	nt =	8!	
		0		31 × 21	
			=	3360	
		fferent arrangement and an R at the end			
	R			R	
	No. F	arrangen	ent =	6!	120
		\		-31	
	IVIA	4117	for repeat	20 30 _s	
	R	0	0 0		R
				<u> </u>	
	·····/			•••••	•••••
	No of	arranaem	ent. (2	De to att	25
••••••		arrangem		03 109 121	<i>u</i>)
				= 4!	= 24
D					- 0
Kogu	ured no	, of arro	ngement	= 120	- 24

Four letters are selected at random from the 8 letters of the word TOMORROW.

Find the probability that the s	selection contains at least one O and at least one R.	[5]
	3 0's 2R's	
O R	${}^{3}C_{1} \times {}^{2}C_{1} \times {}^{3}C_{2} = 18$	
00 R	${}^{3}C_{2} \times {}^{2}C_{1} \times {}^{3}C_{1} = 18$	
000 R	${}^{3}C_{3}^{2} \times {}^{2}C_{1} \times {}^{3}C_{0} = 2$	
0 R R	${}^{3}C_{1} \times {}^{2}C_{2} \times {}^{3}C_{1} = 9$	
0 0 R R	${}^{3}C_{2} \times {}^{2}C_{2} \times {}^{3}C_{0} = 3$	
lotal possib	le Selections:	
12	+18+2+9+3 = 50	
	1 6 7 2 7 7 3 = 30	
MA	THIONIC	