Find the possible values of the constant <i>a</i> .	[4

1.

Solve the equation $8x^6 + 215x^3 - 27 = 0$.	[3]
	••••••
	••••••

The diagram shows a sector OAB of a circle with centre O. Angle $AOB = \theta$ radians and OP = AP = x. (a) Show that the arc length AB is $2x\theta \cos \theta$. [2] (b) Find the area of the shaded region APB in terms of x and θ . [4]

(a)

	$(\cos\theta + \sin\theta)^2 = 1$
	for $0 \le \theta \le \pi$.
(ii)	Hence verify that the only solutions of the equation $\cos \theta + \sin \theta = 1$ for $0 \le \theta \le \pi$ are 0 and $\frac{1}{2}\pi$.

Prove the iden	tity Sin θ		$\frac{\cos \theta + \sin \theta - 1}{\cos \theta}$	[3
riove the iden	$\cos \theta + \sin \theta$	$\cos \theta - \sin \theta$	$\frac{\cos\theta + \sin\theta - 1}{1 - 2\sin^2\theta}.$	[S
•••••	•••••	•••••		
		•••••		
• • • • • • • • • • • • • • • • • • • •	•••••••••••			
	lts of (a)(ii) and (b), solve the equ	ation	
	lts of (a)(ii) and (b), solve the equ	ation	
Using the resu	lts of (a)(ii) and (b), solve the equ		
Using the resu	lts of (a)(ii) and (b), solve the equ	ation	
Jsing the resu	lts of (a)(ii) and (b), solve the equ	ation	
Jsing the resulor $0 \le \theta \le \pi$.	Its of (a)(ii) and ($\frac{\sin \theta}{\cos \theta + \sin \theta}$	b), solve the equivalent $\frac{1-\cos\theta}{\cos\theta-\sin\theta} =$	ation $2(\cos\theta + \sin\theta - 1)$	[3
Using the result or $0 \le \theta \le \pi$.	Its of (a)(ii) and ($\frac{\sin \theta}{\cos \theta + \sin \theta}$	b), solve the equivalent $+\frac{1-\cos\theta}{\cos\theta-\sin\theta} =$	action $2(\cos\theta + \sin\theta - 1)$	[3
Using the result or $0 \le \theta \le \pi$.	Its of (a)(ii) and ($\frac{\sin \theta}{\cos \theta + \sin \theta}$	b), solve the equivalent $+\frac{1-\cos\theta}{\cos\theta-\sin\theta} =$	ation $2(\cos\theta + \sin\theta - 1)$	[3
Using the result or $0 \le \theta \le \pi$.	Its of (a)(ii) and ($\frac{\sin \theta}{\cos \theta + \sin \theta}$	b), solve the equivalent $\frac{1-\cos\theta}{\cos\theta-\sin\theta} =$	action $2(\cos\theta + \sin\theta - 1)$	[3
Using the result for $0 \le \theta \le \pi$.	Its of (a)(ii) and ($\frac{\sin \theta}{\cos \theta + \sin \theta}$	b), solve the equivalent $\frac{1-\cos\theta}{\cos\theta-\sin\theta} =$	action $2(\cos\theta + \sin\theta - 1)$	[3
Using the result for $0 \le \theta \le \pi$.	Its of (a)(ii) and ($\frac{\sin \theta}{\cos \theta + \sin \theta}$	b), solve the equivalent $\frac{1-\cos\theta}{\cos\theta-\sin\theta} =$	ation $2(\cos\theta + \sin\theta - 1)$	[3
Using the result for $0 \le \theta \le \pi$.	Its of (a)(ii) and ($\frac{\sin \theta}{\cos \theta + \sin \theta}$	b), solve the equivalent $\frac{1-\cos\theta}{\cos\theta-\sin\theta} =$	ation $2(\cos\theta + \sin\theta - 1)$	[3

The diagram shows the graph of y = f(x) where the function f is defined by

$$f(x) = 3 + 2\sin\frac{1}{4}x \text{ for } 0 \le x \le 2\pi.$$

		503
(a)	On the diagram above sketch the graph of $v = t^{-1}(r)$	121
(\mathbf{a})	On the diagram above, sketch the graph of $y = f^{-1}(x)$.	[4]

(b)	Find an expression for $f^{-1}(x)$.	[2]

(c)

The diagram above shows part of the graph of the function $g(x) = 3 + 2\sin\frac{1}{4}x$ for $-2\pi \le x \le 2\pi$.

	Complete the sketch of the graph of $g(x)$ on the diagram above and hence explain whether the function g has an inverse. [2]
(d)	Describe fully a sequence of three transformations which can be combined to transform the graph of $y = \sin x$ for $0 \le x \le \frac{1}{2}\pi$ to the graph of $y = f(x)$, making clear the order in which the transformations are applied.

4		
۰	•	

The equation of a circle is $(x-a)^2 + (y-3)^2 = 20$. The line $y = \frac{1}{2}x + 6$ is a tangent to the circle at the point P.

 ••••••
 ••••••
••••••
••••••

•••••		
•••••		
For $a = 4$, find the found in (b) .	he equations of the two tangents to the circle which are	parallel to the normal [4]

The diagram shows the graph of y = f(x), which consists of the two straight lines AB and BC. The lines A'B' and B'C' form the graph of y = g(x), which is the result of applying a sequence of two transformations, in either order, to y = f(x).

State fully the two transformations.	[4]

The function f is defined for $x \in \mathbb{R}$ by $f(x) = x^2 - 6x + c$, where c is a constant. It is given that $f(x) > 2$ for all values of x.
Find the set of possible values of c . [4]

(a)	Give the complete expansion of $\left(x + \frac{2}{x}\right)^5$.	[2]
		••••
		••••
		•••••
		••••
		••••
(b)	In the expansion of $(a + bx^2)\left(x + \frac{2}{x}\right)^5$, the coefficient of x is zero and the coefficient of $\frac{1}{x}$ is	80.
	Find the values of the constants a and b .	[4]
		••••

(a) Show that the equation

	$3\tan^2 x - 3\sin^2 x - 4 = 0$
	ay be expressed in the form $a\cos^4 x + b\cos^2 x + c = 0$, where a , b and c are constants to be und.
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
He	ence solve the equation $3 \tan^2 x - 3 \sin^2 x - 4 = 0$ for $0^\circ \le x \le 180^\circ$.
••••	
••••	
••••	
• • • •	

The diagram shows a sector OAB of a circle with centre O and radius r cm. Angle $AOB = \theta$ radians. It is given that the length of the arc AB is 9.6 cm and that the area of the sector OAB is 76.8 cm².

(a)	Find the area of the shaded region.	[5]
(b)	Find the perimeter of the shaded region.	[2]

The function f is defined by $f(x) = 2 - \frac{5}{x+2}$ for x > -2. (a) State the range of f. [1] (b) Obtain an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [4]

The function g is defined by g(x) = x + 3 for x > 0.

c)	Obtain an expression for $fg(x)$ giving your answer in the form integers.	$\frac{dx+b}{cx+d}$, where a, b, c and d are

•	ı	3	
		J	

The coefficient of x^3 in the expansion of $(3 + 2ax)^5$ is six times the coefficient of x^2 in the expansion of $(2 + ax)^6$.		
Find the value of the constant a . [4]		

(a)	Verify the identity $(2x-1)(4x^2+2x-1) \equiv 8x^3-4x+1$. [1]
(b)	Prove the identity $\frac{\tan^2 \theta + 1}{\tan^2 \theta - 1} = \frac{1}{1 - 2\cos^2 \theta}$. [3]

$\frac{\tan^2\theta + 1}{\tan^2\theta - 1} = 4\cos\theta,$
for $0^{\circ} \le \theta \le 180^{\circ}$. [5]

(c) Using the results of (a) and (b), solve the equation

Functions f and g are defined by

$$f(x) = (x+a)^2 - a \text{ for } x \le -a,$$

$$g(x) = 2x - 1 \text{ for } x \in \mathbb{R},$$

where a is a positive constant.

a)	Find an expression for $f^{-1}(x)$.	[3
	(b) (c)	r.
b)	(i) State the domain of the function f^{-1} .	[1
	(ii) State the range of the function f^{-1} .	[1

•••••
•••••
•••••••••••
•••••
•••••

The coordinates of points A, B and C are (6, 4), (p, 7) and (14, 18) respectively, where p is a constant. The line AB is perpendicular to the line BC.

(a)	Given that $p < 10$, find the value of p .	[4]

A circle passes through the points A, B and C. (b) Find the equation of the circle. [3] Find the equation of the tangent to the circle at C, giving the answer in the form dx + ey + f = 0, where d, e and f are integers. [3]

4	7	
7	•	

A line has equation $y = 6x - c$ and a curve has equation $y = cx^2 + 2x - 3$, where c is a constant. The line is a tangent to the curve at point P .		
Find the possible values of c and the corresponding coordinates of P . [7]		

The function f is defined by $f(x) = 1 + \frac{3}{x-2}$ for x > 2. (a) State the range of f. [1] **(b)** Obtain an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [4] The **(c)**

		•
		•
e	function g is defined by $g(x) = 2x - 2$ for $x > 0$.	
	Obtain a simplified expression for $gf(x)$. [2]	[,
		•
		· •
		•
		. •
		. •
		. •

The diagram shows part of the graph of $y = \sin(a(x+b))$, where a and b are positive constants.

(a)	State the value of a and one possible value of b .	[2]
		•••••
		· • • • • •

Another curve, with equation y = f(x), has a single stationary point at the point (p, q), where p and q are constants. This curve is transformed to a curve with equation

$$y = -3f\left(\frac{1}{4}(x+8)\right).$$

(b)	For the transformed curve, find the coordinates of the stationary point, giving your answer in terms of p and q .	
		•
		•
		•
		. •
		. •
		. •
		•
		. •

The diagram shows points A, B and C lying on a circle with centre O and radius r. Angle AOB is 2.8 radians. The shaded region is bounded by two arcs. The upper arc is part of the circle with centre O and radius r. The lower arc is part of a circle with centre C and radius R.

(a)	State the size of angle ACO in radians.	[1]
(b)	Find R in terms of r .	[1]

Find the area of the shaded region in terms of r .	[7