	www.mathtonic.con
Expand $(3+x)(1-2x)^{\frac{1}{2}}$ in asc coefficients.	cending powers of x , up to and including the term in x^2 , simplifying th [4]
MA	THIONG

	ion ln(x-									-		
	•••••			•••••					•••••			
					•••••	•••••			•••••			•••••
											•••••	
	•••••	•••••		•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••		•••••			
											•••••	
											•••••	
	•••••	••••••		•••••	••••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••		• • • • •
						• • • • • • • • • • • • • • • • • • • •						
						•••••					•••••	
	•••••	•••••						• • • • • • • • • • • • • • • • • • • •		••••••		
			0						•••••		•••••	• • • • •
											•••••	
											•••••	
												• • • • •
											•••••	
•••••	•••••			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••			
						• • • • • • • • • • • • • • • • • • • •					•••••	
•••••	•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••			
											•••••	

The equation of a curve is $y = \frac{e^{\sin x}}{\cos^2 x}$ for $0 \le x \le 2\pi$.

Find $\frac{dy}{dx}$ and here						J Politico	51 mio 00	• ••	[7
	•••••	•••••						• • • • • • • • • • • • • • • • • • • •	
	•••••	••••••				•	••••••	•••••	
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••				
	•••••	•••••	•••••					•••••	 •••••
	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••			• • • • • • • • • • • • • • • • • • • •	 •••••
				•••••					
)		
									 •••••
	M					0	N		
									 •••••
					•••••				
				•••••	•••••				 •••••
	•••••	••••••		•••••				•••••	
			•••••	•••••	•••••				
				•••••					
			•••••	•••••	•••••		•••••		 •••••
								• • • • • • • • • • • • • • • • • • • •	
				• • • • • • • • • • • • • • • • • • • •					

4.

www.mathtonic.com

(a) By sketching a suitable pair of graphs, show that the equation $\csc \frac{1}{2}x = e^x - 3$ has exactly one root, denoted by α , in the interval $0 < x < \pi$.

(b) Verify by calculation that α lies between 1 and 2. [2]

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

(c)	Show that if a sequence of values in the interval $0 < x < \pi$ given by the iterative formula
	$x_{n+1} = \ln\left(\csc\frac{1}{2}x_n + 3\right)$
	converges, then it converges to α . [1]
(d)	Use this iterative formula with an initial value of 1.4 to determine α correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
	MAIT IUNIC
(e)	State the minimum number of calculated iterations needed with this initial value to determine α correct to 2 decimal places. [1]

Use the substitution $u = 1 - \sin x$ to find the exact value of

$$\int_{\pi}^{\frac{3}{2}\pi} \frac{\sin 2x}{\sqrt{1-\sin x}} \, \mathrm{d}x.$$

Give your answer in the form $a+b$	$\sqrt{2}$ where a and b are rational numbers to be determ	ined. [7]
		,
IVIAI		

Given th										
					•••••					••••
										••••
									•••••	••••
							<u>)</u>			
		4 -1	$\int \frac{\sqrt{3}}{2}$	-102						
Hence fi	and the ex	act value	e of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}$	$x \tan^{-1}(2$	x) dx.					
Hence fi	and the ex	act value	e of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}$	$x \tan^{-1}(2$	x) dx.					
Hence fi	and the ex	act value	e of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}$	xtan ⁻¹ (2.	x) dx.	0	N	IC		
	M					0	N	IC		
	M									
	M									
	M									
	M									
	M									
	M									
	N									
	N									
	N									

Express $\frac{6x^2 - 9x - 16}{2x^2 - 5x - 12}$ in partial fractions.	[5]
MATHIONIC	
IVIAIII I OITII O	

The variables x and y satisfy the equation $a^{2y-1} = b^{x-y}$, where a and b are constants.

	•••••	•••••	•••••		••••••		• • • • • • • • • • • • • • • • • • • •
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••				••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		0.4					
Given that $a = b^3$,	state the equ	nation of the	ne straight	line in th	e form y	= px + q, w	here <i>p</i> and
Given that $a = b^3$, rational numbers in	state the equ their simple	nation of thest form.	ne straight	line in th	e form y	= px + q, w	here p and
Given that $a = b^3$, rational numbers in	state the equ their simple	nation of thest form.	ne straigh	line in th	e form y	= px + q, w	here p and
Given that $a = b^3$, rational numbers in	state the equ their simple	eation of thest form.	ne straigh	line in th	e form y	= px + q, w	here p and
Given that $a = b^3$, rational numbers in	state the equ their simple	nation of the	ne straigh	line in th	e form y	= px + q, w	here <i>p</i> and
Given that $a = b^3$, rational numbers in	state the equ their simple	eation of the	ne straight	line in th	e form y	= px + q, w	here <i>p</i> and
Given that $a = b^3$, rational numbers in	state the equ their simple	nation of thest form.	ne straight	line in th	e form y	= px + q, w	here <i>p</i> and
Given that $a = b^3$, rational numbers in	state the equalities their simple	eation of the est form.	ne straight	line in th	e form y	= px + q, w	here p and
Given that $a = b^3$, rational numbers in	state the equ their simple	eation of thest form.	ne straigh	line in th	e form y	= px + q, w	here p and
Given that $a = b^3$, rational numbers in	state the equ their simple	eation of the st form.	ne straight	line in th	e form y	= px + q, w	here p and
Given that $a = b^3$, rational numbers in	state the equather their simple	eation of thest form.	ne straight	line in th	e form y	= px + q, w	here p and
Given that $a = b^3$, rational numbers in	state the equather simple	eation of the est form.	ne straight	line in th	e form y	= px + q, w	here p and
Given that $a = b^3$, rational numbers in	state the equality their simple	action of the est form.	ne straight	line in th	e form y	= px + q, w	here p and
Given that $a = b^3$, rational numbers in	state the equality their simple	action of the est form.	ne straight	line in th	e form y	= px + q, w	where p and
Given that $a = b^3$, rational numbers in	state the equather simple	aation of thest form.	ne straight	line in th	e form y	= px + q, w	here p and
Given that $a = b^3$, rational numbers in	state the equalities their simple	action of the est form.	ne straight	line in th	e form y	= px + q, w	here p and

The equation of a curve is $ye^{2x} + y^2e^x = 6$.	
Find the gradient of the curve at the point where $y = 1$.	[6]
	,
MATH TORIC	
IVIAIIIIVIIIV	

(a)	It is given that the equation $e^{2x} = 5 + \cos 3x$ has only one root.
	Show by calculation that this root lies in the interval $0.7 < x < 0.8$. [2]
(b)	Show that if a sequence of values in the interval $0.7 < x < 0.8$ given by the iterative formula
	$x_{n+1} = \frac{1}{2} \ln \left(5 + \cos 3x_n \right)$
	converges then it converges to the root of the equation in part (a). [1]
	MATHIONIC
(c)	Use this iterative formula to determine the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

The diagram shows the curve $y = xe^{-ax}$, where a is a positive constant, and its maximum point M.

tes of M .	
. — —	

Find the exact value of			
		 •••••	••••
		 •••••	
	•••••	 	
		 •••••	 ••••
		 	••••
	•••••	 	
		 	 ••••
•••••			••••
		 	 • • • •
•••••		•••••	 ••••
			••••
	•••••	 	
		 •••••	 ••••
		 	 ••••
•••••	•••••	 •••••	 ••••
		 •••••	
		 •••••	 • • • •

 •••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
 				•••••	
 					• • • • • • • • • • • • • • • • • • • •
					• • • • • • • • • • • • • • • • • • • •
 Q					
					• • • • • • • • • • • • • • • • • • • •
 •••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
 •••••	•••••	•••••	•••••	•••••	

	••••
	••••
	••••
MATH TONIC	
	••••
	••••
	•

Solve the equation $\delta = -4 \times 3$	5^{-2x} . Give your answer correct to 3 decimal places.	[4]
MA		

The variables x and y satisfy the equation $ky = e^{cx}$, where k and c are constants. The graph of $\ln y$ against x is a straight line passing through the points (2.80,0.372) and (5.10,2.21), as shown in the diagram.

Find the values of k and c . Give each value correct to 2 significant figures.	[4]
	•••••
	•••••
	•••••
	•••••

exact values of R a	$\sqrt{3}\sin 2x$ in and α .			,,				2
		•••••				•••••		
						•••••		
			•••••				•••••	
		•••••	•••••	•••••	•••••	•••••	••••	
		•••••		•••••			•••••	
			•••••					
		•••••						
	•••••			····	<u></u>			
	•••••				,			
	•••••				•••••			
		0						
•••••			•••••••	·····	<u>.</u>	•••••	•••••	••••••
								••••••
		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	
			•••••		•••••	•••••	•••••	
		••••••	•••••	•••••	•••••	•••••	•••••	
		••••••		•••••	•••••	•••••	•••••	
		•••••	••••••	•••••	•••••	•••••	•••••	
					•••••	•••••		
•••••								

(b)	Hence find the exact value of	$\int_0^{\frac{1}{12}7}$	$\frac{\pi}{3c}$	$\cos 2x$	<u>3</u> -√	3 sin	(2x)	$\frac{1}{2}$ dx,	simp	lifyir	ng yo	our ai	ıswe	er.	l	[5]
														••••••		••••
					••••											••••
		•••••	•••••	•••••	••••	• • • • • • • • • • • • • • • • • • • •	••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	,
													•••••			••••
																••••
								9		•••••		•••••	•••••	•••••	•••••	••••
		O											•••••			••••
		(•••••		•••••	•••••	•••••	•••••	•••••			••••
	MAT															••••
																••••
		•••••	•••••	•••••	••••		••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	••••
		•••••											•••••			••••
																••••
		•••••	•••••	••••••	••••	• • • • • • • • • • • • • • • • • • • •	••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••
		•••••											•••••			••••
		•••••	•••••	•••••	••••	••••••	••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	· • • •

Use the substitution $2x = \tan \theta$ to find the exact value of

$$\int_0^{\frac{1}{2}} \frac{12}{\left(1 + 4x^2\right)^2} \, \mathrm{d}x \ .$$

Give your answer in the form $a+b\pi$, where a and b are rational numbers.								
	••••••							
0								
MATHIONIC								