Please check the examination details below before entering your candidate information Candidate Number Centre Number Pearson Edexcel International Advanced Level Tuesday 8 October 2024 Paper Morning (Time: 1 hour 30 minutes) reference Biology International Advanced Subsidiary/Advanced Level **UNIT 1: Molecules, Diet, Transport and Health** ote - The keywords o You must have in quiries contact Scientific caiculator, ruler, HB pencil **Total Marks** anubharoberts@gmail.com hatsapp number- +974 #### Instructions - Use black ink or ball-point pen. - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided there may be more space than you need. - Calculators may be used. - You must show all your working out with your answer clearly identified at the end of your solution. #### Information - The total mark for this paper is 80. - The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. - In questions marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically, showing how the points you make are related or follow on from each other where appropriate. #### Advice - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over P 7 8 3 8 4 A 0 1 3 2 #### Answer ALL questions. Write your answers in the spaces provided. Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . 1 Amoeba are single-celled organisms that live in water. They are able to change their shape. The diagram shows two different shapes that one amoeba can make. (a) An amoeba changes shape by pushing cytoplasm against the cell membrane, forming long thin projections. State the property of the cell membrane that enables the amoeba to change shape. Fluid nature of cell membrane # MATHIONIC - (b) Gas exchange in an amoeba takes place across its cell membrane. - (i) The amoeba can be roughly spherical, as shown in Shape 1. Which is the surface area of the amoeba in this shape? Use the formula: surface area of a sphere = $4\pi r^2$ 🔀 🗚 90 000π μm² \blacksquare **B** 90 000π μm³ \square **C** 360 000 π μ m² **D** 360 000π μm³ (ii) The mass of the amoeba stays the same when it changes from Shape 1 to Shape 2. Which row of the table shows what happens to the surface area and volume of this amoeba when it changes to Shape 2? (1) | 10 | | |-----|---| | 100 | Α | | | | В X C D | surface area | volume | | |----------------|----------------|--| | decreases | decreases | | | increases | increases | | | increases | stays the same | | | stays the same | stays the same | | (iii) Explain why an amoeba can rely on diffusion to supply the oxygen it needs. (2) MATH (Total for Question 1 = 5 marks) (1) (1) 2 During the development of a human, the structure of haemoglobin changes. In the developing fetus the main oxygen-carrying molecule is fetal haemoglobin. Towards the end of fetal development, fetal haemoglobin is replaced by adult forms of haemoglobin. (a) Blood may contain 5.3 million red blood cells in 1 mm³ of blood. One red blood cell can contain 270 million haemoglobin molecules. Calculate the number of haemoglobin molecules in 1 mm³ of blood. Express your answer in standard form. In $1RBC = 270 \times 10^6$ In $1mm^3 = 5.3 \times 10^6$ Total Hb in $1mm^3$ $5.3 \times 270 \times 10^6 \times 10^6$ 1431×10^{12} Answer 1.4×10 - (b) Which of the following statements about the structure of haemoglobin are correct? - 1. It is a fibrous protein X - 2. It has quaternary structure - 3. It contains a non-protein haem group - A TOTAL - **B** 3 only - C 1 and 2 only - D 2 and 3 only (c) The graph shows the changes for three types of haemoglobin subunits present during each stage of development. Stage of development (weeks) (i) Describe the changes in these types of subunits present during each stage of development. Embryonic development & - subunit, \(\beta - \subunit \) and \(\chi \) Subunit increase. Fetal development & - subunit stays same, \(\beta - \subunit \) increases and \(\chi - \subunit \) first increases than decreases. Baby d-subunit stays same, Bsubunit increases and stays constant. Y-subunit decreases and stays same. (ii) The oxygen affinity of fetal haemoglobin is different from adult haemoglobin. Explain why this difference ensures the fetus obtains enough oxygen during development. (2) Fetal haemoglobin has higher affinity for Oxygen than adult haemoglobin. So that Oxygen can diffuse to fetal Haemoglobin from adult haemoglobin at Same xygen concentration. (Total for Question 2=7 marks) **MATH TONIC** 3 Charcot-Marie-Tooth (CMT) is an inherited disease that results in the gradual loss of function and sensation in the hands, arms, legs and feet. Over 100 different gene mutations have been identified that cause CMT. (a) The pedigree diagram shows the inheritance of one form of CMT in part of a family. The allele for CMT can be represented by the letter c in this **recessive** pattern of inheritance. (i) Which row of the table shows the genotype and phenotype for individual 1? | | | genotype | phenotype | |---|---|-------------------------|-------------------------| | X | Α | \ | unaffected homozygous | | X | В | Сс | unaffected heterozygous | | × | c | unaffected heterozygous | СС | | X | D | unaffected homozygous | Cc | Note- Recessive disorders spread on in homozygous condition. Eg cc (1) (ii) Which allele combinations could individual 3 have? (1) - A CC only - B cc only - C CC or cc - D CC or Cc - (iii) What is the probability that a fourth child would be a female with CMT? - (b) Other forms of CMT show a dominant pattern of inheritance - Male Female (1) (i) In the USA, 5% of people with CMT have one of these dominant forms of the disease. of 1/8 /8 (1) In the USA, there are a total of 126 000 people with all forms of CMT. Calculate the number of people in the USA who have one of these dominant forms of CMT. 5 % of 126000 5 x 126000 Answer 6300 (ii) An individual with a dominant form of CMT will have the allele combination TT or Tt. Draw a genetic diagram to show the possible allele combinations of the children of the following parents: - parent 1 does not have CMT † † - · parent 2 has the allele combination Tt Indicate whether each child will have CMT or be unaffected. t Tt tt t Tt tt t Tt with cmr tt it without cmr (c) Another form of CMT can be inherited as a sex-linked trait on the X chromosome. Explain why a male with CMT cannot pass the disease on to his sons. Male have XTY and the CMT allele is on X. Male pass their Y allele to their sons. (Total for Question 3 = 9 marks) (3) - 4 The circulatory system and the cardiac cycle ensure that all the cells of the body are supplied with their requirements. - (a) The table shows the diameter of the lumens of an aorta and a capillary, and the thickness of their walls. | Type of blood vessel | Diameter of lumen | Thickness of wall / mm | |----------------------|-------------------|------------------------| | aorta | 2.5 cm | 2.0 | | capillary | 0.14μm | 0.001 | (i) How many times greater is the diameter of the lumen of the aorta than the diameter of the lumen of the capillary? (1) - B 17900 - ☐ C 178 000 - **▼ D** 179000 1cm = 10000 um (ii) Explain why the wall of the aorta is thicker than the wall of a capillary. (3) Aorta has a thick smooth muscle wall to withstand high pressure of blood. Capillary wall is one cell thick so that there is faster diffusion of 0, to the cells and co, to the into the blood plasma. (b) The table shows the durations of ventricular diastole and ventricular systole at two different heart rates. | Heart rate
/ beats per minute | Duration of ventricular diastole / seconds | Duration of
ventricular systole
/ seconds | | |----------------------------------|--|---|--| | 75 | 0.53 | 0.27 | | | 200 | 0.14 | 0.16 | | Determine the relationship between heart rate and the duration of ventricular diastole and ventricular systole. (2) Both the duration of ventricular diastole and systole decrease with increase in heart beats per minute. The decrease in ventricular diastole is 74% and ventricular systole is 40%. ### **MATH TONIC** (c) The graph shows the rate of flow of blood through the aorta of a dog with increasing distance from the heart. Explain the changes in rate and direction of flow of blood through this aorta. Use the information in the graph to support your answer. Rate of flow of blood in a forward direction decreases with distance. Rate of flow decreases with increase in distance from heart. Due to friction between blood and endothe light wall of aorta. (Total for Question 4 = 9 marks) 5 Warfarin is used as an anticoagulant to treat some patients. Patients respond differently to this drug. This makes it difficult for doctors to select a safe but effective dose of warfarin to give to each patient. Factors that affect the response of a patient to warfarin include age, body mass, liver function and genetic makeup. (a) Explain why a safe but effective dose of warfarin needs to be given to a patient. (2) An increase in effective dose might increase risk of internal bleeding. A decrease in effective might increase risk of blood clok in arteries. (b) There are two genes that code for proteins that affect warfarin and the blood clotting process. #### Gene M: - · codes for enzyme M that breaks down warfarin into inactive molecules - has many alleles and two of these code for much slower breakdown of warfarin. #### Gene V: - codes for enzyme V that converts vitamin K into an active form that triggers the blood clotting process - one version of this gene results in a decreased production of the messenger RNA (mRNA) needed for the synthesis of enzyme V. - (i) Describe the role of mRNA in the production of enzymes. (2) m-RNA carries a copy of genetic information out of nucleus. Genetic information of m-RNA is used to determine amino acid sequence of proteins. ### MATH TONIC *(ii) Pharmacogenomics analyses the genetic profile of individuals. This analysis is used to determine the appropriate doses of a drug for individual patients. Discuss the possible use of pharmacogenomics in selecting appropriate doses of warfarin for individual patients. Use the information in the question and your own knowledge of the blood clotting process and genetic screening to support your answer. Thromboplastin is released from. platelets that convert Prothrombin to thrombin which converts fibrinoge to fibrin which traps RBC to form clot Concerns - Can result in false positive or negative. Can cause ethical or moral iseues Other factors - Patients with high blood cholesterol are likely to receive warfaring Mass of body will determine dose of drug. Pharmacogenomics-It determines genotype Giene M and alleles of gene M which breakdown faster warfarin will require more close of war farin. Giene V is present, it triggers blood clothing so close can be reduced (Total for Question 5 = 10 marks) 6 The photograph shows some soybeans. © inga spence / Alamy Stock Photo (a) Eating soybeans may reduce cholesterol and low-density lipoproteins (LDLs) in the blood. Explain why eating soybeans may reduce the risk of heart disease. Reduces in the risk of development of plaque Blood supply to the heart muscle is not reduced. Oxygen is supplied to muscle by aerobic respiration. (b) The extent to which soybeans reduce cholesterol depends on the variety of soybeans. This reduction is influenced by two proteins found in soybeans, glycinin and β -conglycinin. Give **two** ways that the primary structure of two proteins could differ from each other. (1) ### Number of amino acids. ### Order of amino acids. (c) The effect of soybean extracts on cholesterol production by liver cells growing in culture was investigated. Scientists produced fat-free soybean flour and digested it with enzymes, in a way that copied digestion in the human digestive system. The diagram shows some of the steps used. Step 1 (mouth): soybean flour mixed with saliva to form a moist ball of flour Step 4 (end of process): suspension from step 3 heated for 5 minutes at 100°C Step 5: heated suspension from step 4 used to make an extract containing soybean peptides. (i) Explain why the scientists used digested soybeans to make the extract for this investigation. This is to mimic the digestion in humans. To extract the chemical Glycinin. β-conglycinin. (ii) Suggest why the soybean flour was incubated with different enzymes in steps 2 and 3. Different enzymes are found in different parts of digestive system. (iii) Explain why the soybean flour and enzymes were incubated at 37 °C for 2 hours in steps 2 and 3. 37°C Enzymes work at optimum temperature of human body. 2 hours Time for which food stays organ for digestion. (2) (1) (2) (3) (d) The soybean peptides, at different concentrations, were incubated with the liver cells growing in culture. The enzyme HMGCR is involved in the synthesis of cholesterol. The effect of soybean peptides on the activity of this enzyme and the synthesis of cholesterol was measured. The graph shows the results. Explain why eating soybeans may reduce cholesterol levels in the blood. Use the information in the graph to support your answer. As the concentration of soyabean beptide increases the synthesis of cholesterol decreases as enzyme activity decreases. Soyabean chemicals reduces HMGCR. activity. HMGCR activity is inhibited so the precursor can't bind with HMGCR to form cholesterol. (Total for Question 6 = 12 marks) (2) 7 Scientists investigated the numbers and types of mutations in different species of animal. Samples of tissue were collected from living animals of each species and the types of mutation determined. (a) The types of mutation were classed as either substitution mutations or insertion and deletion mutations. The table shows the results of this investigation. | Number of | | Range of number of mutations per cell | | | |-------------------|-----------------|---------------------------------------|------------------------|--| | Species of animal | animals sampled | Substitution | Insertion and deletion | | | Naked mole rat | 3 | 100 to 850 | 10 to 50 | | | Mouse | 10 | 300 to 2000 | 50 to 400 | | | Dog | 3 | 1 000 to 3 000 | 50 to 300 | | | Human | 8 | 200 to 350 | 10 to 200 | | (i) Describe how these types of mutation affect the **DNA base sequence** of a gene. Substitution - Replaces one base with another base sequence. Insertion - One new base is inserted in the base sequence. Deletion - One base is deleted in the base sequence. (ii) Explain why these animals can survive with a greater number of substitution mutations than insertion and deletion mutations. (4) Substitution can replace one base which may not change the amino acid Protein structure would be same and no change in activity. Insertion or deletion cause frameshift mutation. Protein structure changes and. Protein structure changes and is no longer functional. (iii) Suggest which set of data is the most valid. Give a reason for your answer. Mouse has large sample size. (1) (b) The graphs show the number of mutations per cell during the lifespans of these four animals. (i) Calculate the mean mutation rate for the mouse. Draw a line of best fit onto the graph to help you. 500 + 700 + 1100 + 1600 Answer 975 number of mutations per cell year-1 (2) (ii) Describe three conclusions that can be made from these graphs. (3)As the age increases, number of increases. Mutations show more variability in humans with age and variability in naked mole Different animals have different number of mutations. (iii) Suggest **two** reasons for the differences in the number of mutations per cell of these species of animal. (2)exposure to mutagens like level of repair to damaged DNA (Total for Question 7 = 14 marks) (3) 8 The photograph shows two avocados. in a chain. © Andrii Gorulko / Alamy Stock Photo (a) Avocados are high in unsaturated fatty acids and low in saturated fatty acids. Compare and contrast the structure of an unsaturated fatty acid and the structure of a saturated fatty acid. Similarities. Both have carbon, hydrogen and onygen. Differences. Unsaturated fatty acids have carbon to carbon double bond. Unsaturated fatty acids have kink (b) The effect of eating avocados each week on the risk of coronary heart disease (CHD) was investigated. A group of men and women who had no signs of cardiovascular disease (CVD) or stroke were selected. They were all between the ages of 30 and 75. The group ate avocados each week to replace animal products in their diet whenever possible. The group all completed a questionnaire about the food they are at the start of the investigation and every four years after that for over 30 years. (i) There were 41 701 men and 68 786 women in the group. Which is the ratio of men to women? (1) - **A** 0.6:1 - **■ B** 1:0.6 ## **MATH TONIC** *(ii) Describe the questions that need to be in the questionnaire so that appropriate information can be gathered for this investigation. Give reasons for choosing these questions. (6) Avocado intake - Number of avocados consumed per week. Hownumber of avocados affect results? Have you replaced animal products of fats with avocados? Do you suffer from side-effects of excess of avocados? Other factors of CVD - Smoker or Non-smoker It can cause damage to endothelial lining and plague development. Other factors The HOL to LDL ratio. Salt intake - increases blood pressure Antioxidants intake Reduces Free-radical damage to smooth endothelial wall. (iii) Comment on the validity of the methods used in this investigation. Both males and females are used so valid. For long span of time so valid For long span of time so valid. No control group so not valid. Answers from the volunteers mia Answers from the volunteers might not be the reliable **TOTAL FOR PAPER = 80 MARKS** (4) ### **MATH TONIC**