

SECOND PREDICTED PAPER 4 MAY/JUNE 2025

Cambridge IGCSE[™]

CANDIDATE						
NAME	Solve	d by	An	ubha	Kob	erts
CENTRE NUMBER				CANDID/ NUMBER		
NUMBER				NUMBER	`	
BIOLOGY						0610
Paper 4 Theory	y (Extended)					
	,				1	hour 15 minute
						nour rommute
You must answ	er on the question pa	aper.				
No additional n	naterials are needed.					
No additional i	lateriais are needed.					
INSTRUCTION	IS					
 Answer al 	I questions.					
 Use a blace 	ck or dark blue pen. Y	'ou may use an l	HB pencil for	any diagrams o	r graphs.	
	r name, centre numbe			ne <mark>bo</mark> xes at the t	top of the p	age.
	answer to each ques		e provided.	=		
	e an erasable pen or			=		
	ite on any bar codes.			-		
,	use a calculator.					
 You shoul 	d show all your workir	ng and use appr	opriate units.			

INFORMATION

MATH TONIC

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

For any further queries please contact on email below-

Email ID- anubharoberts@gmail.com Contact no. - +97455012107.

Second Predicted paper 4 May/June 2025

1 (a) Complete the sentence about the nervous system.

(b) Fig. 1.1 shows part of a human eye and three neurones that conduct electrical impulses between the eye and the brain. These neurones are involved in the pupil reflex.

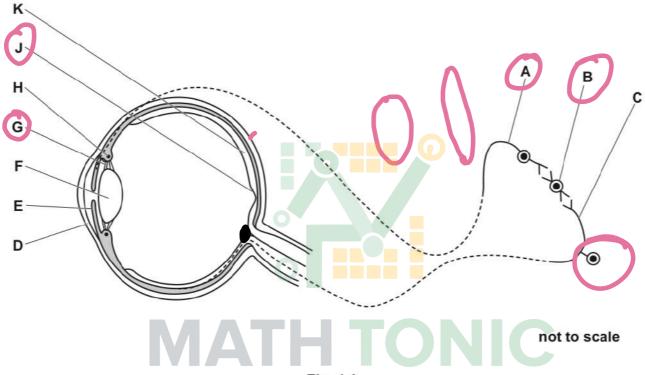


Fig. 1.1

(i) State the type of neurones identified in Fig. 1.1.

Motor neurone

B Relay neurone [2]

(iii) Write the correct letters to complete the reflex arc.

J C B A E

(iv) Table 1.1 shows the names of some parts of the eye, their functions and the letters in Fig. 1.1 that identify the parts of the eye.

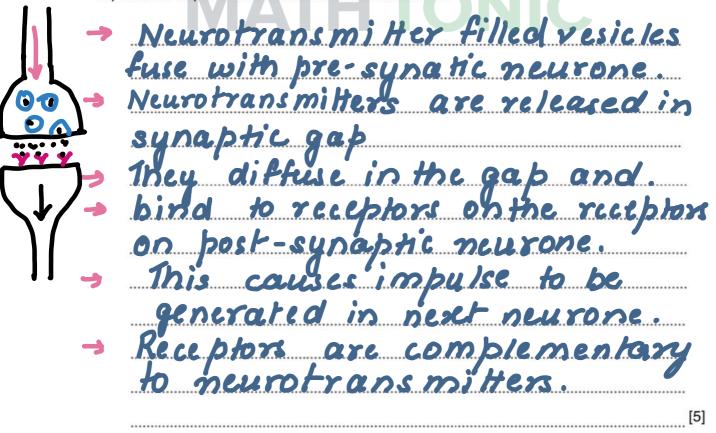

Complete Table 1.1.

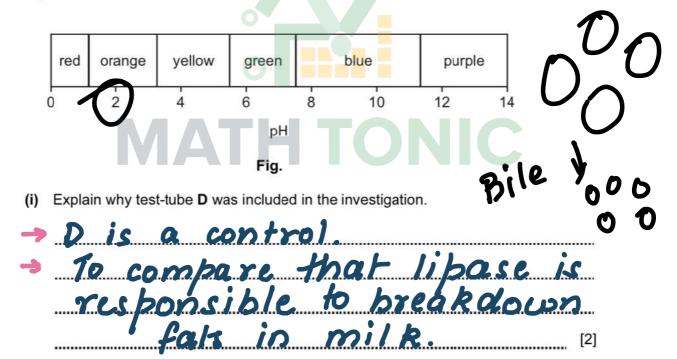
Table 1.1

part of the eye	function	letter in Fig. 1.1
suspensory ligament	Slacken to make lens thick or more	G
Circul a r muscles	contracts in response to a bright light	E
cornea	Refracks the light	D
Forea	contains a high density of cones for colour vision	J

(c) Impulses travel within the neurones through electrical impulses.

Explain how impulse travels in between two neurones.

[Total: 13]


[4]

- 2 (a) A group of students investigated the digestion of fat in milk.
 - They added an alkaline solution to the milk.
 - They divided the milk into four test-tubes.
 - They added lipase and bile salts to some of the test-tubes, as shown in Table 5.1.
 They did this at the same time for each test-tube.
 - They kept all test-tubes at 40 °C.
 - After 5 minutes, they added Universal Indicator solution to each test-tube.

Table 5.1

test-tube	contents	colour of pH indicator after 5 minutes at 40 °C
Α	milk, alkaline solution, lipase and bile salts	orange
В	milk, alkaline solution, bile salts and water	blue
С	milk, alkaline solution, lipase and water	yellow
D	milk, alkaline solution and water	blue

Fig. shows the colour of the indicator at different pH values.

(ii)	Explain why the colour in test-tube A was orange.
ラ	Test tube A has lipase & bile
->	Bile emulsifies fat
7	Lipase breaks down fab
	into fatty acids and glycerol
→	Fatty acids reduce the ph to acidic and cause
	to acidic and cause
	colour change. [3]
(iii)	Explain the results for test-tubes B and C .
-	test-tube B Has no libase so there is
	no fally acid formation.
-	and no colour change due to
	no pH change.
→	no pH change. test-tube C No Bile so no emulsi Hication
->	so libase activity is slower so less fatty acids are formed. [4]
	less fatty acids are formed. [4]
(b) E	Enzymes have a specific three dimensional shape.
	explain why the shape of an enzyme is important.
7	Enzyme have an active site
	which is complementary to shape of substrate.
ليد	shape of substrate.
→	Enzyme binds with only specific substrate.
	Substrate will bind with enzyme
	on active site to form [3]
	[Total: 12]
-	enzyme-substrate complex.

3 Fig. is a diagram of the human female reproductive system.

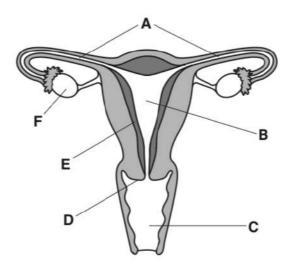
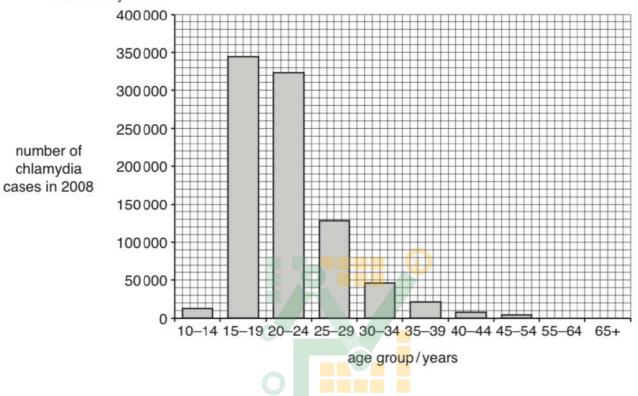


Fig.

(a) Complete Table 4.1 to show the letter and the name of each of the structures that perform these functions.

Table 4.1


function	letter	name
releases oestrogen	F	ovaries
site of fertilisation	A	oviduct/Fallopian tubes
site of implantation	E	spongy wall of utrus
site of sperm deposition	<u></u>	vagina
		[2]

(b) Fertilisation is the fusion of the nuclei of a male gamete and a female gamete resulting in a zygote.

State the number of chromosomes present in a human:

 (c) Chlamydia is a sexually transmitted infection (STI). It is caused by a bacterium *Chlamydia trachomatis*.

Fig. 4.2 shows the number of reported cases of chlamydia in females in each age group in one country.

The number of cases increases

from 10 to 19 years and then.

decreases from 20 to 54 years.

Peaks at 15-19 years at 345000

females.

No cases from 55 to 65+ years.

Sheep decline above 20-24 years.

(i) Suggest a treatment for chlamydia.

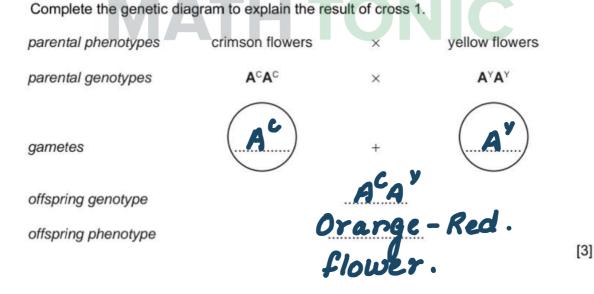
(ii) State the name of one other STI.

Antibiotics

(iii)	Complete the sentences about the spread of STIs. Contaminated.		
	STIs are transmitted through the transfer of DOdy Fluidsduring s	exua	
	contact. One way individuals can avoid the spread of STIs is to use a type of		
	barrier contraception. One example of this type of contrace	ption	
	is Condoms	[2]	

(iv) Outline two ways in which the spread of STI can be reduced.

1. Avoid unknou	on sexual partners
	2 [2]
3. Educating be	ople [Total: 13]
4. Testing before	blood transfusion


MATH TONIC

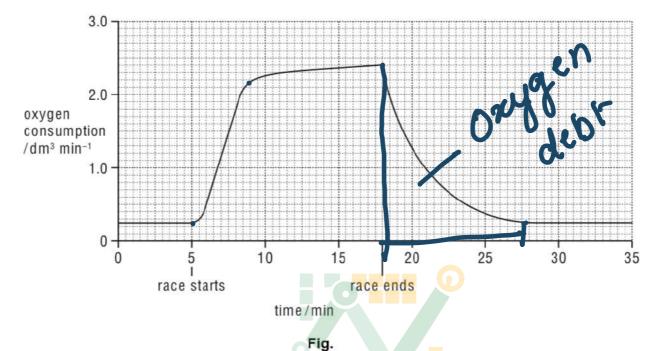
4 The four o'clock plant, Mirabilis jalapa, can have flowers of three different colours as shown in Fig. 4.1.

Fig. 4.1

(a) A student crossed some crimson-flowered plants with some yellow-flowered plants (cross 1). She collected the seeds and grew them. All of the plants that grew from these seeds had orange-red flowers.

	Explain in brief how these carotenoids are produced in plants.
→	A copy carotenoids gene is
	A copy carotenoids gene is made in the form of m-RNA.
-	m-RNA moves out of nucleus
	on ribosomes.
_	
	Ribosomes assemble and join
•	amino acids based on
	the base sequence of m-RNA. [3]
(c)	Farmer grow tall wheat plants to ensure good yield. Tall height is dominant over recessive.
	How will a farmer ensure that a plant is homozygous dominant before crossing it for
	producing other varieties.
-	Test cross
4	Crossing it with recessive
	based ATIITONIIO
	If the progeny is all tall, parent is no mozygous and if it is 50% tall or 50% dwarf it
7	IP THE PROGENY IS All TAIL
	parent is homozygous and it it
	is 50% tall or 50% dwarf it
	is heterozygous.
	11 Tt
	71 16
	Call xtt 1t
	Tall / XEL
	- 11tl - th

(b) Flower colour in M. jalapa is produced by proteins pigments called carotenoids


Flowers from M. jalapa were cross-pollinated.

(d)	Explain the difference between self-pollination and cross-pollination.
SEFF	Transfer of pollen grains from
	anther to stigma of same plant.
CROSS	Transfer of bollen grains from
	anther to stigma of different [2]
(e)	anther to stigma of different [2] plant of same species of plants are self-pollinated.
	Discuss the advantages of self-pollination over cross pollination.
	Self pollination
-	requires only one parent no external pollinator is required
-	no external pollinator is required
-	no nectar is produced.
-	no nectar is produced. Less pollen grains are produced.
	MATHIONIC
	[4]

[Total: 14]

5 Exercise that occurs over a longer period of time than weightlifting often involves aerobic respiration as well as anaerobic respiration.

Fig. shows the oxygen consumed by an athlete during and after a 5000 metre race.

(a) Describe the athlete's oxygen consumption during and after the race as shown in Fig. 4.2.

You will gain credit for using the figures in the graph to support your answer.

during Rate of Daugen consumption increases when race starts to

2.2dm³ min at 9 minutes.

It stays constant till race ends at 18 minutes.

after It decreases gradually to 0.25 dm³ min at 27.5 minutes and stays constant.

	does not return back to normal immedia	tely after the exercise is f	nished.
->	Increased mu	scle cont	raction.
	increased aem	obic resp	niration
->	more co, in t	stood de	creases
-	ph which is	detected	by brain
7	ph which is Brain sends	im pulses	to heart
7	and lungs fo	r faster	heart heat
	and breathing		
->	more co, and	supply	more O2.
7	Less D, concen	tration	leads to
	more Co, and Less D, concen lactic acid fe	rmahon	by
7	angerobic res	bira Hon	[5]
	lactic acid is		
•	liver where is	is broke	en down
	by aerobic res		
	the and water		

(b) Explain how this change during exercise is coordinated and why the oxygen consumption

- 6 This question is about transport in plants.
 - (a) Two pea plants, **D** and **E**, were supplied with substances containing the radioactive isotopes, carbon-14 (¹⁴C) or phosphorus-32 (³²P), as shown in Fig. 4.1.

A leaf of plant **D** was exposed to radioactive carbon dioxide.

Plant **E** was placed into a solution containing radioactive phosphate ions.

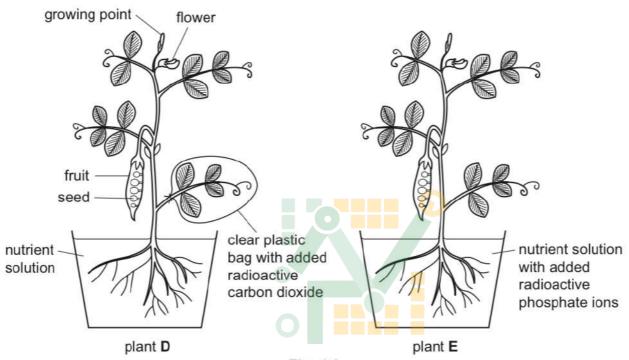


Fig. 4.1

After several hours the plants were analysed for the presence of the radioactive isotopes.

Sucrose containing ¹⁴C was found throughout plant **D**.

Compounds containing ³²P were found throughout plant E.

Complete Table 4.1 to show:

- · the tissue in which each substance is transported;
- · one possible sink for each substance.

Table 4.1

sink	roots	leaves
transport tissue	Phloem	Xylem
substance transported	sucrose	phosphate ions
pea plant	D	E

(b)	to other parts of the plant.
	Amino acids
(c)	Explain how sucrose can be transported in the phloem upwards and downwards.
-	When plant is able to phobsynthesis leaves are acting as source
7	and roots are sink. Sucrose is
	transported down-wards from source to
-	sink. When plant is not able to do
	photosynthesis roots are acting as source and leaves are sink. [4]
(d)	Sucrose is fransported upwards State two uses of water within a pea plant.
	1 Transport ions dissolved in xykm 2 Site for metabolic reactions in [2]
	cytoplas m 3. Photosyn thesis. [Total: 9]

7 Fig. shows the Calayan rail, Gallirallus calayanensis a flightless bird that lives in Calayan Island in the Philippines. This species of bird was discovered in 2004.

(a) State the name of the genus of the Calayan rail.

Gallizallus

Many bird species are threatened by deforestation.

- (b) Suggest three reasons why deforestation occurs.
 - ho grow crops
 - to build houses
 - to obtain wood | paper [3]
- **for mining**(c) Suggest the likely effects of deforestation on populations of bird species.
- Habitat loss
- + fewer nest sites
- More exposed to predators

 More competition for food.

(d) Some species of birds, such as the Calayan rail, are endangered.

Outline the reasons why it is important to conserve species.

っ	Imbala	ince in	food	chain
7	to mai	ntain	biodi	versity.
7	Each s	becies	s dep	endent on
	others	so less	food	for
	bredak	ors of	Calqu	an rail. [3]

[Total: 10]

